Brief information about the project
\(\left.\left.$$
\begin{array}{|l|l|}\hline \text { Name of the project } & \begin{array}{l}\text { AP14869472 «Investigation of secular perturbations in } \\
\text { multi-planet systems with spherical bodies of variable } \\
\text { mass» }\end{array}
$$ \\
\hline Relevance Observational astronomy testifies that the masses \\
of real celestial bodies are variable. In this connection, the \\
problem of formation and dynamical evolution of \\
planetary systems at the non-stationary stage of their \\
evolution, when mass variability is the leading factor of \\
evolution, is investigated. \\
The idea of the project is to identify the effects \\
of the variability of the masses of planets and of the \\
central star on the dynamic evolution of planetary \\
systems. The isotropic and anisotropic changes in the \\
masses of the bodies included in the system are \\
considered. Body mass decreases due to separating \\
particles and increases due to joining particles, may \\
be reactive forces. \\

This project is aimed at calculating the secular\end{array}\right\} $$
\begin{array}{l}\text { perturbations of the orbital elements of planets, based }\end{array}
$$\right\}\)| on aperiodic motion over a quasi-canonical section, in |
| :--- |
| various systems of variables and in different forms of |
| the equation of perturbed motion. |
| The fundamental difference of the project idea from other |
| works and the scientific novelty of the project are the use |
| of the perturbation theory, which based on a special |
| selected aperiodic motion over a quasi-conic section, |
| developed by project participations. for the study of |
| gravitating systems with variable masses. |

	1. Derivation of the motion differential equations of many spherically symmetric bodies with variable masses, with a point-by-point description of these bodies dynamics, in a relative coordinate system with the origin in the center of the parent star. 2. Define systems of osculating elements - variables to describe specific problems and corresponding equations of perturbation theory. 3. Derivation of perturbing functions to use perturbation theory in the form of the Lagrange equation. 4. Derivation of perturbing functions for the canonical perturbation theory equation in the analogues of the second Poincaré system of variables. 5. Derivation perturbing functions for using the perturbation theory in the form of the perturbed motion equation in the Newton's form. 6. Decomposition and correction of perturbing functions into series, with any required degree of accuracy, on the elements of aperiodic motion along a quasi-conical section, by methods of computer algebra in Mathematica analytical calculations. 7. Derivation of evolutionary equations, by averaging
over mean longitude, in different variables and in different	
forms.	
$8 . \quad$ Solve numerically the derived equations of secular	
perturbations and visualize the results.	
9. Analyze the obtained results and describe the possible	
evolutionary tracks of multi-planet systems with variable	
masses.	
10. An overall analysis of the project work and	
identification of further promising problems in the	
dynamics of planetary systems with variable masses.	
Writing the final report.	

	doctoral students, undergraduates and senior university students. The results obtained in the team of authors are at the world level, and the expected results will determine the world level in this field of science. The Republic of Kazakhstan is actively developing the space industry, the Baikonur Cosmodrome is located in our republic, space science will develop at a faster pace. This explains the social demand and economic interest in the implementation of the project and obtaining its results.
Research team members with their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles	1. Minglibayev Mukhtar, Doctor of Physical and Mathematical Sciences, Professor, Hirsch Index - 5, ORCID: 0000-0002-8724-2648, Researcher ID: P-16672015, Scopus Author ID: 55899392100 2. Prokopenya Alexander, Doctor of Physical and Mathematical Sciences, Professor, Hirsch Index - 9, ORCID: 0000-0001-9760-5185, Researcher ID: AAW-4288-2021, Scopus Author ID: 16203559900 3. Baisbaeva Oralkhan, Master of Science, Scopus Author ID: 57217827770, Researcher ID: AGF-7506-2022, ORCID: 0000-0003-0953-6971 4. Bizhanova Saltanat, Master of Science ORCID: 0000-0001-9957-1599, Researcher ID - AGG-7231-2022, Scopus Author ID: 57216129486 5. Kosherbayeva Aiken, Master of Technical Sciences, ORCID: 0000-0002-8223-2344 6. Ibraimova Aigerim, Master of Science in Education, ORCID: 0000-0002-6998-8323 7. Assan Balnur, bachelor.
List of publications with links to them	- Published articles included in the list recommended by CQASEME RK: 1. M. Minglibayev, A. Kosherbayeva. Evolution equations of multi-planet systems with variable masses // Journal of Mathematics, Mechanics and Computer Science. -2022, V. 116, No. 4, 35-45. https://doi.org/10.26577/JMMCS.2022.v116.i4.04 2. M. Minglibayev, A. Kosherbayeva. System of linear differential equations of secular perturbations of exoplanets with variable masses // "Bulletin of the National Engineering Academy of the Republic of Kazakhstan" and "Computing Technologies Federal Research Center for Information and Computational Technologies". -2022, No. 3 (1), 134-146. - Published an article in the journal included in the SCOPUS database: Chichurin A., Prokopenya A., Minglibayev M., Kosherbayeva A. Symbolic-Numeric Computation in Modeling the Dynamics of the Many-Body System TRAPPIST // Lecture Notes in Computer Science Lecture Notes in Computer Science. 2023.V.14075. P.469-482. doi: 10.1007/978-3-031-36024-4_36 - Published abstracts in the proceedings of international conferences:

	1. Minglibayev M.Zh., Prokopenya A.N., Kosherbayeva A.B. Investigation of the dynamic evolution of planetary systems with isotropically varying masses Complex Planetary Systems II. Kavli-IAU Symposium 382. University of Namur, Belgium, July 3-7, 2023. -P.42-43. 2. Chichurin A., Prokopenya A., Minglibayev M. and Kosherbayeva A. Symbolic-Numeric Computation in Modeling the Dynamics of the Many-Body System TRAPPIST. The International Conference on Computational Sciences. Prague, Czech Republic, 3-5 July, 2023, On-line. -P.99. 3. Prokopenya A., Minglibayev M., Ibraimova A. Derivation of the evolution equations in the restricted three-body problem with variable masses by using Computer Algebra. Applications of Computer Algebra ACA 2023, Warsaw, Poland, July 17 - 21, 2023. P. 68. 4. Minglibayev M., Prokopenya A., Kosherbayeva A.B. The problem of many bodies with isotropically varying masses. Applications of Computer Algebra - ACA 2023, Warsaw, Poland, July 17 - 21, 2023. - P. 70.
Patents	-

